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Vinogradov’s mean value

Js 1 (X) is the number of solutions of the system of Diophantine
equations

l‘lf_l—i---'—kxf:_l=ylf_1+--~+y§_1

$1++Is:y1++y5
where each variable is a positive integer < X.

Mean value form:

Js,k(X):/---/) Z elagn + -+ apn®) 2sda

1<n<X
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Applications

Bounds on J; ,(X) have numerous applications:

Bounds for exponential sums, e.g. Weyl sums

Waring’s problem
the Prouhet-Tarry-Escott problem
Diophantine inequalities

Bounding the Riemann zeta function

Additive combinatorics

Short mixed character sums

Equations over finite fields
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From Weyl sums to Vinogradov’s mean value

Let f(a) = Z elagn + -+ apn®).
1<n<X
If f(«) is large for some a, then

@ f(B) is large when 3 is close to «;
© For integer y,

fla) = Z elagn + -+ apn®) + O(y)
I+y<n<X+y
= Y eloy(n+y) + - +arn+y)*) +0®)
1<n<X
= c(y)f(B) + O(y),

where |c(y)| =1 and 3; = ZozZ(Z) Y.
iz
Conclusion: if f(a) is large (say on a “minor arc”), then expect
Js.1x(X) to be large.
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I. The Diophantine system
i . .
d@l-y)=0 (1<j<k)
i=1

has trivial (diagonal) solutions with z; = y; for each i. Thus

Jsp(X) > | X]°.

IL. If |oj| < (6kX7)~L for every j, then |ayn + -+ + agn®| <
for every n < X. Thus,

Jor(X) > / /
o 1<(6kX) 1 Jjag|<(6kX )1

S x2s—5k(k+1)

=

%LXJ‘QSda
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Lower bounds, arithmetic proof

II. The second “trivial” lower bound can be proved by a
counting argument: Let J; ;(X;h) be the number of solutions
of the system of congruences

S

@l —y)=h; (1<j<k),
i=1
and let 7(m) be the number of solutions of the system

S
Z$g:mj (1<j5<k).
i=1

By Cauchy’s inequality,
Jop(Xsh) = Y r(my)r(my) <Y r(m)? = J,k(X;0) = J, x(X).

mi—mo=h

Hence

[X]% =3 Jor(Xih) < Y- Jop(X) < X2FEEDI ().
h h
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Conjectured order

Easy lower bounds: J ;(X) > s max <X8,X25—%k(k+1)> )
Main Conjecture: These bounds are sharp, i.e.

Toh(X) Cppoe X max (X7, X23HECD)

X s < k(k2+1)
= XE .
X 25— 3h(k+1) > k(k2+1)_
Probabilistic heuristic: Choose z1,...,ys at random from
[1, X]. Then
Bj:al+-4al—yl - —yl=0

occurs with probability about X 7. If all E; are independent,
then all E; occur with probability about X~ akCAD),
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Estimates for s > k% (Large s)

Let n(s, k) be the infimum of numbers 7 so that

Js k(X) < X2$_%k(k+1)+7]

1. Karatsuba, Stechkin, 1975. We have n(s, k) < %er_s/kQ
and )
s k(X) ~ Os, k) X*72HEFD (4)

for s > 3k*log k.

2. Wooley, 1992-96. We have (i) (s, k) < 1k2e= /"
(ii) (A) holds for s > k?log k.
3. Wooley, 2011, “Efficient congruencing”.

(i) We have 1(s, k) = 0 for s > k2 — 1;
(ii) We have (A) for s > k2.
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Estimates for s < 1k% (Small s)

Definition

Let 0(s, k) be the infimum of numbers d so that

Js,k <<s,k XS_HS-
Put A\ = s/k?. Then
5(k, s) < \k? (Stechkin, Karatsuba, 1975).
§(k,s) < \3/2k?  (Arkhipov-Karatsuba, 1978).
§(k,s) < A2k? (Tyrina, 1987).

5(k, s) = AkS/2 exp(— k:AZ) (Wooley, 1995). Extremely
good for s < k3/2(log k)~!. Worse than trivial for s > k3/2.

"]
"]

o §(k,s) <4AAN=0(1) for s < 1k +k  (Wooley, 2012).
o 0(k,s)=0for s < 1k?+ 3k  (Ford-Wooley, 2013).
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The main conjecture for smaller s

The Main Conjecture asserts that J; ;(X) <k X5 when
s < 3k(k+1). That is, the system
i . .
d@l-y)=0 (1<j<k)
i=1
doesn’t have “much more” than the trivial solutions.

I. True for s < k trivially. Here x is a permutation of y by the
Viéte-Girard-Newton formulas (A. Girard, 1629).

II. Known true for s = k 4+ 1 in the 1950s (L.-K. Hua). Before
2012, not known for any larger s.

Theorem (Ford-Wooley, 2013)

We have
Js,k(X) <<s,k,5 XS+E

for s < 3(k+1)2.
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Central special case: s = sg = sk(k + 1).

o d(k,s0) < 0.303265. .. k> (Stechkin, Karatsuba, 1975).
o §(k,s0) < 0.256195. .. k? (Arkhipov-Karatsuba, 1978).
o §(k,sp) < 0.231960.. . k? (Tyrina, 1987).

o §(k,s0) <0.238835...k? (Wooley, 1992).

o d(k,s0) <0.202225...k? (A-K,Tyrina,Wooley hybrid).
o 0(k,s0) <0.125000...k* (Wooley, 2012).

o 0(k,s0) <0.085786...k* (Ford-Wooley, 2013).

Special case: s = k? — tk, where t is small.
o n(k,s) < 3t2  (Wooley, 2012).

o n(k,s) < 1t (Ford-Wooley, 2013).
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Application: Waring’s problem, I

Let Rs(n) = #{(z1,...,25) e N* :n =2k + - + zF}.
Hardy and Littlewood: asymptotic formula for R, ;(n) (large s).

Definition: G(k) is the smallest ¢ such that the asymptotic
formula holds for all s > ¢.

Well-known: It suffices that ¢ > 4k and for m the minor arcs,

/m‘gk(a;X)‘tda =o(X'"™") (X 5 00), gila;X) =) e(an®).

n<X
Trivial bound: fol lgx(c; X)|?* da < X 2s—k+n(s.k)
Tool 1 (Ford, 1995). For any integer m, 1 < m < k,

1
/ |91 (0 X)|?* dav < X2+ mnls—gm(m=1)k)
0
Tool 2 (Wooley, 2012). One has

/ g5 (c; X)|** dov < X2k tHnlok) e
m
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Application: Waring’s problem, p. 2

Progression of bounds for C~¥(l<:) for large k:

o G(k) < 4k*logk (Hua, 1949).
(k) < 2k%*logk  (Wooley, 1992).
o G(k) < Kk%logk (Ford, 1995).
(k) < 2k2 — kY3 + O(k)  (Wooley, 2011).
(k) < 2k = 22/°k*3 + O(k)  (Ford-Wooley, 2013).

Some numerical improvements:

G(12) < 253, G(13) <299, G(14) <349, G(15) < 403,

Vaughan’s bounds G(k) < 2% are still the best for k = 3,4, 5.
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Ideas for bounding J j,

Perhaps the most important property of the system

S

Sl-y)=0 (1<j<k) (1)
=1

is the invariance of the solution set under translations and
dilations. That is, letting x; = Au; + B, y; = Av; + B for each i,
where A, B € N, the new system is easily seen, by the binomial
theorem, to be equivalent to

S

Yol —v)=0 (1<ji<h).
=1

In particular, if 1 < a < ¢, then the number of solutions of (1)

with 1 < 2,9 < X and 24,9, = a (mod ¢) equals J&k(%).
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Linnik’s p-adic method, I

For (n;a) = a;n + --- + apn®, let

fla)=>Y e@ma), flabg= Y  e(@(ma).
<X nEbn(fn)gdq)

Fix a prime p. By Holder’s' inequality,

Toh (X /!f \2’“’ f(a;&p)(%da

=1
P P
/|f \Qk Zl) Z|f(a;€,p)|25da
=1
< p* max /]f )| f (0 €, p)* de.

1. J. Rogers (1888)
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Linnik’s p-adic method, II

The integral
[ 5@ @zt da

counts solutions of the Diophantine system

stk '
d@l-yh)=0 (1<j<k)
=1

with Thd 1y vy Lstks Y1y - -+ Ys+k = é- (mOd p)

Writing x; = puj_r +&, ys = pv;_p +Efor k+1 < i < s+ k, and
using the binomial theorem, the system becomes

k s
Do(wi =& — (-8 =p Y (u] —v))  (1<j<h).
=1

i=1
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Linnik’s p-adic method, III

In particular,
k

Y@= —(3i—¢ =0 (mod p!)  (1<j<h).
i=1
Lifting solutions to a common modulus, the number of solutions
x,y mod pF of this system is < p' T2 +(*=1) times the number

of solutions of the system
k

D (@i =& = (g =€) =0 (mod p*)  (1<j<k).

i=1
Assuming the x; are distinct modulo p and similarly for the y;,
the Viete-Girard-Newton formulas imply x is a permutation of
y modulo p*. Classical method: count separately the z;, y;
and the u;, v;. If XYk < p < 2XY*, then

Jonn(X) < p2tab-Dxk g (X/p+1).

Iteration gives Jp 1 (X) < X 2hk—gk(k+1)+3k2(1-1/k)"
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Efficient Congruencing (Wooley, 2011)

Take p much smaller than X'/*. Since x is a permutation of y
modulo p¥, one can “undo” the binomial theorem and get

25+ L k(k—1)
T (X) < p™T2 max I(¢),

where I(£) counts solutions of the system

k s

Y@l —yh=>(wl-2) (1<j<kh

i=1 i=1

with z; = y; (mod p*) and w;, z; = € (mod p) . By Holder,

-/ (pz|f<a;n,pk>|2)’“|f<a;s,p>128da

<p* max /If a;n,p") ¥ f (e €, p)[* dev.

1<n<p
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Efficient congruencing,

MIRAL LE
OLCuRS ..

Applying Holder again:
. —k/s
/!f(a;n,p’“)lzl”!f(a;&p)!?sda < (/\f(a;g,p)\%“’fda)l ;
‘ k/s
x (/If(a;n,pk)\lslf(a;&p)l%da) :

RHS: 1st integral is Jsi4 %(X/p + 1); 2nd counts solutions of
s k

Yl —y) =) Wl -z  (1<i<h

i=1 i=1

with z;,1; =7 (mod p*) and w;, z; = ¢ (mod p).
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Efficient congruencing, part 3

By the binomial theorem again, the system is equivalent to

After lifting the congruences all to modulus p"’z7 we again find
that w is a permutation of z modulo pkz (assuming the w; are
distinct modulo p? and similarly with the z;).

Continue this process, generating ever more efficient

4 N .
congruences modulo ka, p*" . We stop when p*" > X. This
bounds Jy4 (X)) in terms of Jy k. (X/D), Jsrrr(X/PY), ete.

The end result is (k% + k, k) = 0.
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Efficient congruencing variation 1

Arkhipov-Karatsuba, 1978. Let 1 < r < k. Separate 2r
variables x1,..., %, y1,...,y, instead of 2k variables. We get

r

Y@= —(3i—¢ =0 (modp’)  (1<j<h).

=1

Lifting all congruences up to modulus p* “costs” p%k’(k’_l).

Better: ignore the lower k£ —r congruences (with 1 < j <k —r)
and lift the rest. The “cost” is now pér(r*l), much less.
# variables = # congruences = x =y (mod pF).

Now relate J, 1, 1 (X) to Js x(X/p + 1) in the classical setting.
Often the optimal value of r is less than k.

Inserted into the Efficient Congruencing method, we relate
<]s+’r,k(X) to JS+7',k(X/p)7 etc.
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Efficient Congruencing variation 2

Tyrina, 1987. As with the Arkhipov-Karatsuba method,
separate 2r variables and ignore the congruences for
1 < j < k—r. However, we lift all the congruences only up to
modulus pf, where 1 < t < k. For t < k, this has smaller “cost”,
namely

p%(tJrrfk)(t«H“fkfl) (t > k)

Weaker conclusion: x is a permutation of y modulo p'.

Tyrina (1987) takes r =t > k/2 in the classical setup.
We take arbitrary r,¢; usually r =~ ¢ give the best bounds.
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Tyrina, p. 2

In the efficient congruencing iteration, we actually need to
bound the number of solutions of the system

Y=y = (wi—n) (modp?) (1<) <k),
=1 =1
with 1 < z;, w; < p', and all w;, z; = € (mod p?), and pt (n—&).

The true “cost” of this system is

b (t+r—k)(t+r—k—1)+2 (t+r—k)(k+r—t—1)
p2 2 .

Optimal cost: when r +t = k, above is p°.
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Our main theorem

Theorem
Suppose 1 <t <k andr+t>k. Fors=r(t+1),

Jox(X) <o Xs+%(t+r—k)(t+r—k—1+%)+s

)

Example: If r + ¢ =k, get J, x(X) < X°T°.
Max s at r =t = k/2 (k even), r = 571, = £51 (k 0dd).

Example: r =t =k —m. Gives n((k—m)?+ (k—m), k) < m?.
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