Strongly diagonal behavior in Vinogradov's mean value theorem

Kevin Ford¹ Trevor D. Wooley²

¹University of Illinois

 2 University of Bristol

October, 2013

Vinogradov's mean value

Definition

 $J_{s,k}(X)$ is the number of solutions of the system of Diophantine equations

$$x_1^k + \dots + x_s^k = y_1^k + \dots + y_s^k$$

$$x_1^{k-1} + \dots + x_s^{k-1} = y_1^{k-1} + \dots + y_s^{k-1}$$

$$\vdots$$

$$x_1 + \dots + x_s = y_1 + \dots + y_s$$

where each variable is a positive integer $\leq X$.

Mean value form:

$$J_{s,k}(X) = \int \cdots \int \Big| \sum_{1 \leq n \leq X} e(\alpha_1 n + \cdots + \alpha_k n^k) \Big|^{2s} d\alpha$$

Applications

Bounds on $J_{s,k}(X)$ have numerous applications:

- Bounds for exponential sums, e.g. Weyl sums
- Waring's problem
- the Prouhet-Tarry-Escott problem
- Diophantine inequalities
- Bounding the Riemann zeta function
- Additive combinatorics
- Short mixed character sums
- Equations over finite fields

From Weyl sums to Vinogradov's mean value

Let
$$f(\alpha) = \sum_{1 \le n \le X} e(\alpha_1 n + \dots + \alpha_k n^k).$$

If $f(\alpha)$ is large for some α , then

- $f(\beta)$ is large when β is close to α ;

$$f(\boldsymbol{\alpha}) = \sum_{1+y \le n \le X+y} e(\alpha_1 n + \dots + \alpha_k n^k) + O(y)$$

=
$$\sum_{1 \le n \le X} e(\alpha_1 (n+y) + \dots + \alpha_k (n+y)^k) + O(y)$$

=
$$c(y) f(\boldsymbol{\beta}) + O(y),$$

where
$$|c(y)| = 1$$
 and $\beta_j = \sum_{i > j} \alpha_i \binom{i}{j} y^{i-j}$.

Conclusion: if $f(\alpha)$ is large (say on a "minor arc"), then expect $J_{s,k}(X)$ to be large.

Lower bounds

I. The Diophantine system

$$\sum_{i=1}^{s} (x_i^j - y_i^j) = 0 \qquad (1 \le j \le k)$$

has trivial (diagonal) solutions with $x_i = y_i$ for each i. Thus

$$J_{s,k}(X) \geqslant \lfloor X \rfloor^s$$
.

II. If $|\alpha_j| \leq (6kX^j)^{-1}$ for every j, then $|\alpha_1 n + \cdots + \alpha_k n^k| \leq \frac{1}{6}$ for every $n \leq X$. Thus,

$$J_{s,k}(X) \geqslant \int_{|\alpha_1| \leqslant (6kX)^{-1}} \cdots \int_{|\alpha_k| \leqslant (6kX^k)^{-1}} \left| \frac{1}{2} \lfloor X \rfloor \right|^{2s} d\alpha$$
$$\gg_{k,s} X^{2s - \frac{1}{2}k(k+1)}.$$

Lower bounds, arithmetic proof

II. The second "trivial" lower bound can be proved by a counting argument: Let $J_{s,k}(X; \mathbf{h})$ be the number of solutions of the system of congruences

$$\sum_{i=1}^{s} (x_i^j - y_i^j) = h_j \qquad (1 \le j \le k).$$

and let $r(\mathbf{m})$ be the number of solutions of the system

$$\sum_{i=1}^{s} x_i^j = m_j \qquad (1 \leqslant j \leqslant k).$$

By Cauchy's inequality,

$$J_{s,k}(X; \mathbf{h}) = \sum_{\mathbf{m}_1 - \mathbf{m}_2 - \mathbf{h}} r(\mathbf{m}_1) r(\mathbf{m}_2) \leqslant \sum_{\mathbf{m}} r(\mathbf{m})^2 = J_{s,k}(X; \mathbf{0}) = J_{s,k}(X)$$

Hence

$$\lfloor X \rfloor^{2s} = \sum_{\mathbf{h}} J_{s,k}(X; \mathbf{h}) \leqslant \sum_{\mathbf{h}} J_{s,k}(X) \ll X^{\frac{1}{2}k(k+1)} J_{s,k}(X).$$

Conjectured order

Easy lower bounds: $J_{s,k}(X) \gg_{k,s} \max \left(X^s, X^{2s-\frac{1}{2}k(k+1)}\right)$.

Main Conjecture: These bounds are sharp, i.e.

$$\begin{split} J_{s,k}(X) \ll_{k,s,\varepsilon} X^{\varepsilon} \max \left(X^{s}, X^{2s-\frac{1}{2}k(k+1)} \right) \\ = X^{\varepsilon} \cdot \begin{cases} X^{s} & s \leqslant \frac{k(k+1)}{2} \\ X^{2s-\frac{1}{2}k(k+1)} & s \geqslant \frac{k(k+1)}{2}. \end{cases} \end{split}$$

Probabilistic heuristic: Choose x_1, \ldots, y_s at random from [1, X]. Then

$$E_j: x_1^j + \dots + x_s^j - y_1^j - \dots - y_s^j = 0$$

occurs with probability about X^{-j} . If all E_i are independent, then all E_j occur with probability about $X^{-\frac{1}{2}k(k+1)}$.

Estimates for $s \gtrsim k^2$ (Large s)

Definition

Let $\eta(s,k)$ be the infimum of numbers η so that

$$J_{s,k}(X) \ll X^{2s - \frac{1}{2}k(k+1) + \eta}$$

1. Karatsuba, Stechkin, 1975. We have $\eta(s,k) \lesssim \frac{1}{2}k^2e^{-s/k^2}$ and

$$J_{s,k}(X) \sim C(s,k)X^{2s-\frac{1}{2}k(k+1)}$$
 (A)

for $s \gtrsim 3k^2 \log k$.

- **2. Wooley, 1992–96.** We have (i) $\eta(s,k) \lesssim \frac{1}{2}k^2e^{-2s/k^2}$;
- (ii) (A) holds for $s \gtrsim k^2 \log k$.
- 3. Wooley, 2011, "Efficient congruencing".
- (i) We have $\eta(s,k) = 0$ for $s \ge k^2 1$;
- (ii) We have (A) for $s \ge k^2$.

Estimates for $s \lesssim \frac{1}{4}k^2$ (Small s)

Definition

Let $\delta(s,k)$ be the infimum of numbers δ so that

$$J_{s,k} \ll_{s,k} X^{s+\delta}$$
.

Put $\lambda = s/k^2$. Then

- $\delta(k, s) \ll \frac{\lambda k^2}{}$ (Stechkin, Karatsuba, 1975).
- $\delta(k, s) \ll \lambda^{3/2} k^2$ (Arkhipov-Karatsuba, 1978).
- $\delta(k, s) \ll \lambda^2 k^2$ (Tyrina, 1987).
- $\delta(k,s) = \lambda k^{5/2} \exp(-\frac{A}{k\lambda^2})$ (Wooley, 1995). Extremely good for $s \leq k^{3/2} (\log k)^{-1}$. Worse than trivial for $s \geq k^{3/2}$.
- $\delta(k,s) \leqslant 4\lambda = O(1)$ for $s \leqslant \frac{1}{4}k^2 + k$ (Wooley, 2012).
- $\delta(k, s) = 0$ for $s \leq \frac{1}{4}k^2 + \frac{1}{2}k$ (Ford-Wooley, 2013).

The main conjecture for smaller s

The Main Conjecture asserts that $J_{s,k}(X) \ll_{s,k,\varepsilon} X^{s+\varepsilon}$ when $s \leq \frac{1}{2}k(k+1)$. That is, the system

$$\sum_{i=1}^{s} (x_i^j - y_i^j) = 0 \qquad (1 \le j \le k)$$

doesn't have "much more" than the trivial solutions.

- I. True for $s \leq k$ trivially. Here **x** is a permutation of **y** by the Viéte-Girard-Newton formulas (A. Girard, 1629).
- II. Known true for s=k+1 in the 1950s (L.-K. Hua). Before 2012, not known for any larger s.

Theorem (Ford-Wooley, 2013)

We have

$$J_{s,k}(X) \ll_{s,k,\varepsilon} X^{s+\varepsilon}$$

for
$$s \leq \frac{1}{4}(k+1)^2$$
.

Bounds for intermediate s, $\frac{1}{4}k^2 \lesssim s \lesssim k^2$

Central special case: $s = s_0 = \frac{1}{2}k(k+1)$.

•
$$\delta(k, s_0) \le 0.303265 \dots k^2$$
 (Stechkin, Karatsuba, 1975).

•
$$\delta(k, s_0) \leqslant 0.256195 \dots k^2$$
 (Arkhipov-Karatsuba, 1978).

•
$$\delta(k, s_0) \le 0.231960 \dots k^2$$
 (Tyrina, 1987).

•
$$\delta(k, s_0) \leq 0.238835 \dots k^2$$
 (Wooley, 1992).

•
$$\delta(k, s_0) \leq 0.202225 \dots k^2$$
 (A-K, Tyrina, Wooley hybrid).

•
$$\delta(k, s_0) \leq 0.125000 \dots k^2$$
 (Wooley, 2012).

•
$$\delta(k, s_0) \leq 0.085786 \dots k^2$$
 (Ford-Wooley, 2013).

Special case: $s = k^2 - tk$, where t is small.

•
$$\eta(k,s) \lesssim \frac{1}{2}t^2$$
 (Wooley, 2012).

•
$$\eta(k,s) \lesssim \frac{1}{4}t^2$$
 (Ford-Wooley, 2013).

Application: Waring's problem, I

Let $R_{s,k}(n) = \#\{(x_1, \dots, x_s) \in \mathbb{N}^s : n = x_1^k + \dots + x_s^k\}.$

Hardy and Littlewood: asymptotic formula for $R_{s,k}(n)$ (large s).

Definition: $\widetilde{G}(k)$ is the smallest t such that the asymptotic formula holds for all $s \ge t$.

Well-known: It suffices that $t \ge 4k$ and for \mathfrak{m} the minor arcs,

$$\int_{\mathfrak{m}} \left| g_k(\alpha; X) \right|^t d\alpha = o(X^{t-k}) \quad (X \to \infty), \quad g_k(\alpha; X) = \sum_{n \leqslant X} e(\alpha n^k).$$

Trivial bound: $\int_0^1 |g_k(\alpha;X)|^{2s} d\alpha \ll X^{2s-k+\eta(s,k)}$.

Tool 1 (Ford, 1995). For any integer $m, 1 \leq m \leq k$,

$$\int_0^1 |g_k(\alpha; X)|^{2s} d\alpha \ll X^{2s-k+\frac{1}{m}\eta(s-\frac{1}{2}m(m-1),k)}.$$

Tool 2 (Wooley, 2012). One has

$$\int_{\mathfrak{m}} \left| g_k(\alpha; X) \right|^{2s} d\alpha \ll X^{2s-k-1+\eta(s,k)+\varepsilon}.$$

Application: Waring's problem, p. 2

Progression of bounds for $\widetilde{G}(k)$ for large k:

- $\widetilde{G}(k) \lesssim 4k^2 \log k$ (Hua, 1949).
- $\widetilde{G}(k) \lesssim 2k^2 \log k$ (Wooley, 1992).
- $\widetilde{G}(k) \lesssim k^2 \log k$ (Ford, 1995).
- $\widetilde{G}(k) \le 2k^2 k^{4/3} + O(k)$ (Wooley, 2011).
- $\widetilde{G}(k) \le 2k^2 \frac{2^{2/3}}{3}k^{4/3} + O(k)$ (Ford-Wooley, 2013).

Some numerical improvements:

$$\widetilde{G}(12)\leqslant 253,\quad \widetilde{G}(13)\leqslant 299,\quad \widetilde{G}(14)\leqslant 349,\quad \widetilde{G}(15)\leqslant 403,$$

Vaughan's bounds $\widetilde{G}(k) \leq 2^k$ are still the best for k = 3, 4, 5.

Ideas for bounding $J_{s,k}(X)$

Perhaps the most important property of the system

$$\sum_{i=1}^{s} (x_i^j - y_i^j) = 0 \qquad (1 \leqslant j \leqslant k)$$
 (1)

is the invariance of the solution set under translations and dilations. That is, letting $x_i = Au_i + B$, $y_i = Av_i + B$ for each i, where $A, B \in \mathbb{N}$, the new system is easily seen, by the binomial theorem, to be equivalent to

$$\sum_{i=1}^{s} (u_i^j - v_i^j) = 0 \qquad (1 \le j \le k).$$

In particular, if $1 \leqslant a \leqslant q$, then the number of solutions of (1) with $1 \leqslant x_i, y_i \leqslant X$ and $x_i, y_i \equiv a \pmod{q}$ equals $J_{s,k}(\frac{X+q-a}{q})$.

Linnik's p-adic method, I

For $\psi(n; \boldsymbol{\alpha}) = \alpha_1 n + \dots + \alpha_k n^k$, let

$$f(\boldsymbol{\alpha}) = \sum_{n \leqslant X} e\left(\psi(n; \boldsymbol{\alpha})\right), \quad f(\boldsymbol{\alpha}; b, q) = \sum_{\substack{n \leqslant X \\ n \equiv b \pmod{q}}} e\left(\psi(n; \boldsymbol{\alpha})\right).$$

Fix a prime p. By Hölder's¹ inequality,

$$J_{s+k,k}(X) = \int |f(\boldsymbol{\alpha})|^{2k} \Big| \sum_{\xi=1}^{p} f(\boldsymbol{\alpha}; \xi, p) \Big|^{2s} d\boldsymbol{\alpha}$$

$$\leq \int |f(\boldsymbol{\alpha})|^{2k} \Big(\sum_{\xi=1}^{p} 1 \Big)^{2s-1} \sum_{\xi=1}^{p} |f(\boldsymbol{\alpha}; \xi, p)|^{2s} d\boldsymbol{\alpha}$$

$$\leq p^{2s} \max_{1 \leq \xi \leq p} \int |f(\boldsymbol{\alpha})|^{2k} |f(\boldsymbol{\alpha}; \xi, p)|^{2s} d\boldsymbol{\alpha}.$$

¹L. J. Rogers (1888)

Linnik's p-adic method, II

The integral

$$\int |f(\boldsymbol{\alpha})|^{2k} |f(\boldsymbol{\alpha}; \xi, p)|^{2s} d\boldsymbol{\alpha}$$

counts solutions of the Diophantine system

$$\sum_{i=1}^{s+k} (x_i^j - y_i^j) = 0 \qquad (1 \le j \le k)$$

with $x_{k+1}, ..., x_{s+k}, y_{k+1}, ..., y_{s+k} \equiv \xi \pmod{p}$.

Writing $x_i = pu_{i-k} + \xi$, $y_i = pv_{i-k} + \xi$ for $k+1 \le i \le s+k$, and using the binomial theorem, the system becomes

$$\sum_{i=1}^{k} (x_i - \xi)^j - (y_i - \xi)^j = \mathbf{p}^j \sum_{i=1}^{s} (u_i^j - v_i^j) \qquad (1 \leqslant j \leqslant k).$$

Linnik's p-adic method, III

In particular,

$$\sum_{i=1}^{k} (x_i - \xi)^j - (y_i - \xi)^j \equiv 0 \pmod{p^j} \qquad (1 \le j \le k).$$

Lifting solutions to a common modulus, the number of solutions $\mathbf{x}, \mathbf{y} \mod p^k$ of this system is $\leq p^{1+2+\cdots+(k-1)}$ times the number of solutions of the system

$$\sum_{i=1}^{k} (x_i - \xi)^j - (y_i - \xi)^j \equiv 0 \pmod{p^k} \qquad (1 \le j \le k).$$

Assuming the x_i are distinct modulo p and similarly for the y_i , the Viète-Girard-Newton formulas imply \mathbf{x} is a permutation of \mathbf{y} modulo p^k . Classical method: count separately the x_i, y_i and the u_i, v_i . If $X^{1/k} \leq p \leq 2X^{1/k}$, then

$$J_{s+k,k}(X) \ll p^{2s+\frac{1}{2}k(k-1)}X^kJ_{s,k}(X/p+1).$$

Iteration gives $J_{hk,k}(X) \ll X^{2hk-\frac{1}{2}k(k+1)+\frac{1}{2}k^2(1-1/k)^h}$.

Efficient Congruencing (Wooley, 2011)

Take p much smaller than $X^{1/k}$. Since \mathbf{x} is a permutation of \mathbf{y} modulo p^k , one can "undo" the binomial theorem and get

$$J_{s+k,k}(X) \ll p^{2s+\frac{1}{2}k(k-1)} \max_{1 \leqslant \xi \leqslant p} I(\xi),$$

where $I(\xi)$ counts solutions of the system

$$\sum_{i=1}^{k} (x_i^j - y_i^j) = \sum_{i=1}^{s} (w_i^j - z_i^j) \qquad (1 \leqslant j \leqslant k)$$

with $x_i \equiv y_i \pmod{p^k}$ and $w_i, z_i \equiv \xi \pmod{p}$. By Hölder,

$$\begin{split} I(b) &= \int \Big(\sum_{\eta=1}^{p^k} |f(\boldsymbol{\alpha}; \eta, p^k)|^2\Big)^k |f(\boldsymbol{\alpha}; \xi, p)|^{2s} \, d\boldsymbol{\alpha} \\ &\leqslant p^{k^2} \max_{1 \leqslant \eta \leqslant p^k} \int |f(\boldsymbol{\alpha}; \eta, p^k)|^{2k} |f(\boldsymbol{\alpha}; \xi, p)|^{2s} \, d\boldsymbol{\alpha}. \end{split}$$

Efficient congruencing, part 2

Applying Hölder again:

$$\int |f(\boldsymbol{\alpha}; \eta, p^{k})|^{2k} |f(\boldsymbol{\alpha}; \xi, p)|^{2s} d\boldsymbol{\alpha} \leq \left(\int |f(\boldsymbol{\alpha}; \xi, p)|^{2s+2k} d\boldsymbol{\alpha}\right)^{1-k/s}$$
$$\times \left(\int |f(\boldsymbol{\alpha}; \eta, p^{k})|^{2s} |f(\boldsymbol{\alpha}; \xi, p)|^{2k} d\boldsymbol{\alpha}\right)^{k/s}.$$

RHS: 1st integral is $J_{s+k,k}(X/p+1)$; 2nd counts solutions of

$$\sum_{i=1}^{s} (x_i^j - y_i^j) = \sum_{i=1}^{k} (w_i^j - z_i^j) \qquad (1 \leqslant j \leqslant k)$$

with $x_i, y_i \equiv \eta \pmod{p^k}$ and $w_i, z_i \equiv \xi \pmod{p}$.

Efficient congruencing, part 3

By the binomial theorem again, the system is equivalent to

$$\sum_{i=1}^{k} ((w_i - \eta)^j - (z_i - \eta)^j) \equiv 0 \pmod{p^{jk}} \qquad (1 \le j \le k).$$

After lifting the congruences all to modulus p^{k^2} , we again find that **w** is a permutation of **z** modulo p^{k^2} (assuming the w_i are distinct modulo p^2 and similarly with the z_i).

Continue this process, generating ever more efficient congruences modulo p^{k^3} , p^{k^4} . We stop when $p^{k^N} > X$. This bounds $J_{s+k,k}(X)$ in terms of $J_{s+k,k}(X/p)$, $J_{s+k,k}(X/p^k)$, etc.

The end result is $\eta(k^2 + k, k) = 0$.

Efficient congruencing variation 1

Arkhipov-Karatsuba, 1978. Let $1 \le r \le k$. Separate 2r variables $x_1, \ldots, x_r, y_1, \ldots, y_r$ instead of 2k variables. We get

$$\sum_{i=1}^{r} (x_i - \xi)^j - (y_i - \xi)^j \equiv 0 \pmod{p^j} \qquad (1 \le j \le k).$$

Lifting all congruences up to modulus p^k "costs" $p^{\frac{1}{2}k(k-1)}$.

Better: ignore the lower k-r congruences (with $1 \le j \le k-r$) and lift the rest. The "cost" is now $p^{\frac{1}{2}r(r-1)}$, much less. # variables = # congruences $\implies \mathbf{x} \equiv \mathbf{y} \pmod{p^k}$.

Now relate $J_{s+r,k}(X)$ to $J_{s,k}(X/p+1)$ in the classical setting. Often the optimal value of r is less than k.

Inserted into the Efficient Congruencing method, we relate $J_{s+r,k}(X)$ to $J_{s+r,k}(X/p)$, etc.

Efficient Congruencing variation 2

Tyrina, 1987. As with the Arkhipov-Karatsuba method, separate 2r variables and ignore the congruences for $1 \le j \le k-r$. However, we lift all the congruences only up to modulus p^t , where $1 \le t \le k$. For t < k, this has smaller "cost", namely

 $p^{\frac{1}{2}(t+r-k)(t+r-k-1)}$ $(t+r \geqslant k).$

Weaker conclusion: \mathbf{x} is a permutation of \mathbf{y} modulo p^t .

Tyrina (1987) takes $r = t \ge k/2$ in the classical setup. We take arbitrary r, t; usually $r \approx t$ give the best bounds.

Tyrina, p. 2

In the efficient congruencing iteration, we actually need to bound the number of solutions of the system

$$\sum_{i=1}^{r} (z_i - \eta)^j \equiv \sum_{i=1}^{r} (w_i - \eta)^j \pmod{p^{jb}} \qquad (1 \le j \le k),$$

with $1 \leqslant z_i, w_i \leqslant p^{tb}$, and all $w_i, z_i \equiv \xi \pmod{p^a}$, and $p \nmid (\eta - \xi)$.

The true "cost" of this system is

$$p^{\frac{b}{2}(t+r-k)(t+r-k-1)+\frac{a}{2}(t+r-k)(k+r-t-1)}.$$

Optimal cost: when r + t = k, above is p^0 .

Our main theorem

Theorem

Suppose $1 \le r, t \le k$ and $r + t \ge k$. For s = r(t + 1),

$$J_{s,k}(X) \ll_{\varepsilon} X^{s+\frac{1}{2}(t+r-k)(t+r-k-1+\frac{2r-2}{t-1})+\varepsilon},$$

Example: If r + t = k, get $J_{s,k}(X) \ll X^{s+\varepsilon}$.

Max s at r = t = k/2 (k even), $r = \frac{k+1}{2}$, $t = \frac{k-1}{2}$ (k odd).

Example: r = t = k - m. Gives $\eta((k - m)^2 + (k - m), k) \leqslant m^2$.