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Large gaps between primes

Def: G(x) := max
pn6x

(pn − pn−1), pn is the nth prime.

Theorem (F-Green-Konyagin-Maynard-Tao, 2018)

G(x) � logx
log2 x log4 x

log3 x
.

Chains of gaps:

Gk(x) := maxpn+k6xmin(pn+1 − pn, . . . , pn+k − pn+k−1)

Theorem (F-Maynard-Tao, 2018+)

For every k,

Gk(x) �k logx
log2 x log4 x

log3 x



Proving large gaps: Jacobsthal’s function

ST = {n ∈ Z : (n,QT ) = 1}, QT =
∏

p6T p.

Main goal: Find J(T ), the largest gap in ST .

Lower bound (FGKMT, 2018). J(T ) � T
log T log3 T

log2 T .

Covering: J(T ) is the largest y so that there are a2, a3, a5, . . . with

{ap mod p : p 6 T} ⊇ [0, y]



Least prime in an arithmetic progression

Let p(k, l) = min{p : p ≡ l (mod k)},M(k) = max
(l,k)=1

p(k, l).

Upper bounds

Linnik, 1944. M(k) � kL. (Xylouris - L = 5.18).
ERH: L = 2 + ε; Chowla conjecture: L = 1 + ε.

Lower bounds

Trivial: M(k) � φ(k) log k.
Prachar; Schinzel - 1961/62. For infinitely many k,

M(k) � φ(k) log k
log2 k log4 k

(log3 k)
2

. (1)

Wagstaff (1978) - (1) holds for all prime k.
Pomerance (1980) - (1) holds for almost all k, in fact all k with at

most exp(log2 k/ log3 k) prime factors.



Least prime in an arithmetic progression, II

Pomerance: M(k) � φ(k) log k
log2 k log4 k

(log3 k)
2

for almost all k.

Lemma (Pomerance): Let j(m) be the maximal gap between

numbers comprime tom. If 0 < m 6 k/j(k) and (m, k) = 1 then
M(k) > kj(m).

Takem =
∏

p6(1−δ) log k
p-k

p need a lower bound on j(m).

Corollary (FGKMT, 2018). If k has no prime factor 6 log k, then

M(k) � φ(k) log k
log2 k log4 k

log3 k
. (2)

Theorem (J. Li-K. Pratt-G. Shakan, 2017)

Inequality (2) holds for all k with at most exp{(1/2 − ε)
log2 k log4 k

log3 k }
prime factors.



Least Prime in an A.P. – conjectures

Conjecture (folklore): M(k) � k log2+ε k.

Conjecture (Wagstaff, 1979): M(k) ∼ φ(k) log2 k for “most k”

Wagstaff’s heuristic:Given l < k(log k)3, (l, k) = 1, the

“probability” that l is prime is ≈ k/φ(k)
log k . So

P(l, l + k, . . . , l + bm log kck all composite) ∼
(
1− k/φ(k)

log k

)m log k

∼ e−m/φ(k).

Hence

P (M(k) 6 mk log k) ∼
(
1− e−mk/φ(k)

)φ(k)

∼ exp{−φ(k)e−mk/φ(k)}.

Threshhold valuem ∼ φ(k)
k logφ(k)



Least prime in AP: Refined conjectures

Conjecture (Li-Pratt-Shakan, 2017)

lim inf
k→∞

M(k)

φ(k) log2 k
= 1, lim sup

k→∞

M(k)

φ(k) log2 k
= 2.
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Figure: Histogram forM(k)/φ(k) log(φ(k)) log k for k 6 106



Least prime in AP: Li-Pratt-Shakan conjecture

Rough heuristic argument: “coupon collectors problem”

pn - n-th prime,mk - a param, a ∈ Z/kZ

Ea - the event that p1, p2, . . . , pmk
6≡ a (mod k)

Ak - the event {M(k) > pmk
} =

⋃
aEa.

We have P(Ak) ∼
∑

a P(Ea) ∼ φ(k)e−m/φ(k)

Ifm = λφ(k) logφ(k), this is ∼ φ(k)1−λ.

(1) If λ ≈ 1, threshhold for being “small”. Justifies Wagstaff and

lim inf.

(2) When λ ≈ 2, threshhold for P(Ak) holding for infinitely many k
(using Borel-Cantelli). Justifies lim sup.



New lower bounds on J(T ): outline

2 ylog10 x z x

y = cx
log x log3 x

log2 x , z = x
c
log3 x
log2 x Want {apmod p : p 6 x} ⊇ [0, y]

1 ap = 0 for p ∈ (z, x/4] ∩ [2, log10 x]. Uncovered: z-smooth

numbers and primes;

2 Random, uniform choice of ap, log
10 x < p 6 z.

3 Strategic choice of ap, x/4 < p 6 x/2 to cover many reminaing

elements.

4 (trivial) Use single ap for each x/2 < p 6 x to cover each

remaining uncovered element.



Stage 2: random, uniform choice of ap

Q1 - the set of uncovered elements after stage 1 (mainly primes).

Q2(a) := the set of uncovered elements after stage 2

= Q1 \
⋃
p∈P

(ap mod p),

where P is the set of primes in (log10 x, z].

Lemma

w.h.p., |Q2(a)| ∼ σπ(y), σ :=
∏

p∈P(1− 1/p)

Proof. Recall |Q1| ∼ π(y). We calculate 1st, 2nd moments:

E|Q2(a)| =
∑
n∈Q1

P(n ∈ Q2(a))

=
∑
n∈Q1

∏
p∈P

P(n 6≡ ap (mod p)) = σ|Q1|.



Lemma

w.h.p., |Q2(a)| ∼ σπ(y), σ :=
∏

p∈P(1− 1/p)

Proof (continued). For the 2nd moment,

E|Q2(a)|2 =
∑

n1,n2∈Q1

P(n1, n2 ∈ Q2(a))

= E|Q2(a)|+
∑

n1,n2∈Q1
n1 6=n2

∏
p∈P

P(ni 6≡ ap (mod p); i = 1, 2).

Now P(ni 6≡ ap (mod p); i = 1, 2) = 1− 2/p unless p|n1 − n2,

which occurs for O(logx) primes p. Get

E|Q2(a)|2 =
∑

n1,n2∈Q1

σ2
(
1 +O((logx)−9)

)
= (σ|Q1|)2

(
1 +O((logx)−9)

)
.

The Lemma follows from the 1st, 2nd moment bounds plus

Chebyshev’s inequality.



Random residues: higher correlations

Define the random sifted set

S(a) = Z \
⋃
p∈P

(ap mod p).

In particular, Q2(a) = Q1 ∩ S(a).

Lemma (S(a) correlations)
Let n1, . . . , nt be distinct integers in [−y, y], with t � logx. Then

P(n1, . . . , nt ∈ S(a)) = σt
(
1 +O(t2/ log9 x)

)
.



Stage 3: Strategic choices

We choose ap, x/4 < p 6 x/2 to have two properties:

(a) the sets ep := (ap mod p) ∩Q2(a) are large (on average) for
x/4 < p 6 x/2;

(b) the collection of sets {ep : x/4 < p 6 x/2} covers most of

Q2(a) efficiently (little overlap).

Item (a) is accomplished using a weighted, prime detecting sieve.

Recall that Q1, and hence Q2(a) consists mainly of primes.

The average of |ep|, over all choices of ap is

|Q2(a)|
p

� |Q2(a)|
x

∼ σy

logx
= o(1).

So a random (uniform) choice for ap is very inefficient!

Item (b) is accomplished using hypergraph covering methods.



Primes in sparse A.P.’s: weighted sieves

Admissible k-tuple h1, . . . , hk
Prime-detecting weight fcn. w(n) = w(n;h) (GPY-Maynard-Tao)

Goal: Find w(n) which is large when many of the numbers n+ hi
are prime, and small otherwise, and such that the sums

T1(N) =
∑
n�N

w(n), T2(N) =
∑
n�N

k∑
j=1

1(n+ hj prime)w(n)

can both be evaluated asymptoticlaly. If

T2(N) > rT1(N), (w)

then there are some values of n � N such that the set

{n+ h1, . . . , n+ hk} contains at least r primes.

Theorem (Maynard, 2016)

For k 6 (logN)1/5, hi � xc, ∃ weights s.t. (w) holds with r ∼ log k.



Sieve weights

Fix an admissible k-tuple 1 6 h1 < · · · < hk � k2, k ∼ (logx)1/5.
Let x/4 < p 6 x/2. Then hp := (h1p, . . . , hkp) is admissible.

Define the weight w(p, n) by

w(p, n) = w(n;hp); (0 6 n 6 y).

Two crucial estimates (after suitable notmalization)

Theorem (FGKMT)

(a)
1

π(y)

∑
n6y

w(p, n) ∼ 1 (p ∈ P);

(b)
1

|P|
∑
p∈P

k∑
i=1

w(p, q − hip) ∼ log2 x (x < q 6 y]

(a) is a T1 sum; (b) is a T2-type sum (with a different k-tuple).



Weighted choice of ap for x/4 < p 6 x/2

Select a random number in np ∈ [0, y] with probability proportional to
w(p, n); that is

P(np = n) :=
w(p, n)∑
l w(p, l)

(0 6 n 6 y).

Bigger weight when many of n+ hip are prime.

For each p ∈ P and fixed (non-random) vector ~a, let

Xp(~a) := P(np + hip ∈ S(a) for all i = 1, . . . , k).

Lemma (Q2(a) correlations) + Chebyshev⇒ Xp(a) ∼ σk w.h.p.

Spse ~a = ~a. Define r.v. mp by

P(mp = m|a = ~a) :=
Zp(~a;m)

Xp(~a)
,

Zp(~a;m) =

{
P(np = m) ifm+ hjp ∈ S(~a) for j = 1, . . . , k

0 otherwise,



weights, II

P(mp = m|a = ~a) :=
Zp(~a;m)

Xp(~a)
,

Zp(~a;m) =

{
P(np = m) ifm+ hjp ∈ S(~a) for j = 1, . . . , k

0 otherwise,

Let ap ≡ mp (mod p), x/4 < p 6 x/2. Then

(1) mp + hip ∈ S(a) for all i;
(2) (on avg) |Q2(a) ∩ (ap mod p)| & log k � log2 x (the k-tuple

contains many primes)

If the sets ep = Q2(a) ∩ (ap mod p) have little overlap (efficiently

chosen), they cover about� x log2 x/ logx elements. Good if

σ
y

logx
6 c

x log2 x

logx
.


