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Def: G(z) := max(p, — pn_1), Pn is the n'" prime.

Pn<T

log, xlog,

G(x) > logx

log; =
Chains of gaps:
Gk( ) = maXy, ., <= mln(pn—i-l Pns -5 Pnt+k — Pn+k— 1
For every k,

log, zlog, =

1
Gr(z) >y logx log,



Proving large gaps: Jacobsthal’s function

Sr={nezZ:(nQr)=1}, Qr= Hpng.
Main goal: Find J(7'), the largest gap in Sy.

Lower bound (FGKMT, 2018). J(T) > T8 115"

Covering: J(T) is the largest y so that there are as, a3, as, ... with

{a, modp:p<T} D0,y



Least prime in an arithmetic progression

Let p(k,l) =min{p: p =1 (mod k)}, M (k) = ma§1p(k, D).

)

Upper bounds

Linnik, 1944. M (k) < k*. (Xylouris - L = 5.18).
ERH: L =2+ ¢; Chowla conjecture: L =1 + €.

Lower bounds
Trivial: M (k) > ¢(k)logk.
Prachar; Schinzel - 1961/62. For infinitely many £,
log, klog, k
(logg k)? -

Wagstaff (1978) - (1) holds for all prime &.
Pomerance (1980) - (1) holds for almost all k, in fact all k£ with at
most exp(log, k/ logs k) prime factors.

M(k) > ¢(k)logk (@)



Least prime in an arithmetic progression, II

log, klog, k

(logs k)?
Lemma (Pomerance): Let j(m) be the maximal gap between
numbers comprime to m. If 0 < m < k/j(k) and (m, k) = 1 then
M(k) > kj(m).

Take m = H p  need a lower bound on j(m).

p<(1—0) log k
ptk

Corollary (FGKMT, 2018). If £ has no prime factor < log k, then

Pomerance: M (k) > ¢(k)logk for almost all k.

log, klog, k

M(k) > 6(k) log k=52

)

Theorem (J. Li-K. Pratt-G. Shakan, 2017)

Inequality (2) holds for all £ with at most exp{(1/2 — 5)%}

prime factors.



Least Prime in an A.P. — conjectures
Conjecture (folklore): M (k) < klog?™ k.
Conjecture (Wagstaff, 1979): M (k) ~ ¢(k)log? k for “most k”
Wagstaff’s heuristic:Given | < k(log k)3, (I, k) = 1, the

“probability” that [ is prime is ~ kl/o(g(,]: ). So
k E)\ ™ log k&
P(l,l+k,...,l+ [mlogk]k all composite) ~ (1 - HA )>
log k
o emm/ok)

Hence

o(k
P (M (k) < miklogh) ~ (1 — e /%) *

~ exp{—g(k)e /).

Threshhold value m ~ 2% log ¢ (k)



liminka)2 =1, lim sup Lk)z =
k—oo ¢(k)log” k k—oo ¢(k)log”k

Figure: Histogram for M (k)/¢(k)log(é(k)) log k for k < 10°



Least prime in AP: Li-Pratt-Shakan conjecture

Rough heuristic argument: “coupon collectors problem”
pr, - n-th prime, my, - a param, a € Z/k7Z

E, - the event that p1,pa2, . .., pm, # a (mod k)
Ay, - the event {M (k) > pm,. } = U, Ea-

We have P(Ay) ~ >, P(E,) ~ ¢(k)e ™/¢F)
If m = Ao(k) log ¢(k), this is ~ (k).

(1) If A = 1, threshhold for being “small”. Justifies Wagstaff and
lim inf.

(2) When A = 2, threshhold for P(Ay) holding for infinitely many &
(using Borel-Cantelli). Justifies lim sup.



New lower bounds on .J(7'): outline

| | | | |
I

]
2 log!® z z x (0
logg =
Y= cx%, z=x"P2:  Want {a,mod p:p <z} 20,y

©® o, = 0forp e (z,2/4 N [2,log" z]. Uncovered: z-smooth
numbers and primes;

® Random, uniform choice of a, log'®z < p < 2.

@® Strategic choice of ay, z/4 < p < x/2 to cover many reminaing
elements.

@ (trivial) Use single a,, for each /2 < p < z to cover each
remaining uncovered element.



Stage 2: random, uniform choice of a,

Q; - the set of uncovered elements after stage 1 (mainly primes).

Qs(a) := the set of uncovered elements after stage 2
=01\ U (ap mod p),
peEP
where P is the set of primes in (log'® z, 2].
Lemma
whp., |Q2(a)] ~ o7 (y), o := [T,ep(1 - 1/p)

Proof. Recall |Q;| ~ 7(y). We calculate 1st, 2nd moments:

E|Qz(a) = ) P(n € Qu(a))

neQi

= > JI P #a, (mod p)) = o[ Q.

neQ1 peP



Lemma
w.hp., |Qa(@)| ~ om(y), o :=[[,cp(1 —1/p)

Proof (continued). For the 2nd moment,

E[Q@) = Y P(n,nz € Q:a))

ni,n2€Q1

=E|Q@)+ Y [[P(i#a, (modp)i=1,2).

n1,n2€Qq peP
n1#n2

Now P(n; # a, (mod p);i =1,2) =1 — 2/p unless p|n; — na,
which occurs for O(log x) primes p. Get

E|Q:@)P = Y  o®(1+0((logz)™?))

n1,n2€Q

= (0]Q1])? (1 + O((logz)™?)) .

The Lemma follows from the 1st, 2nd moment bounds plus
Chebyshev’s inequality.



Define the random sifted set

S(a) =7\ | (a, mod p).
peEP

In particular, Q2(a) = Q; N S(a).

Letny,...,n; be distinct integers in [—y, y|, with t < log x. Then

P(ni,...,n € S(a)) = o' (1 + O(t?/log’ z)) .



Stage 3: Strategic choices

We choose a,, /4 < p < x/2 to have two properties:

(a) the sets e, := (a, mod p) N Qa(a) are large (on average) for
z/4<p< /2

(b) the collection of sets {e, : ©/4 < p < x/2} covers most of
Qs (a) efficiently (little overlap).

Item (a) is accomplished using a weighted, prime detecting sieve.
Recall that Q;, and hence Qy(a) consists mainly of primes.
The average of |e,|, over all choices of a,, is

|Q2(a)] _ [Q(a)] oy
p =z log z

=o(1).

So a random (uniform) choice for a,, is very inefficient!

Item (b) is accomplished using hypergraph covering methods.



Primes in sparse A.P.’s: weighted sieves

Admissible k-tuple hq, ..., hx
Prime-detecting weight fcn. w(n) = w(n;h) (GPY-Maynard-Tao)

Goal: Find w(n) which is large when many of the numbers n + h;
are prime, and small otherwise, and such that the sums

k
Ty(N)= > w(n),  To(N)=> Y 1(n+h; prime)w(n)
n=N n=N j=1
can both be evaluated asymptoticlaly. If
To(N) = rTi(N), (W)

then there are some values of n =< N such that the set
{n+ hi,...,n+ hy} contains at least r primes.

Theorem (Maynard, 2016)
For k < (log N)'/?, h; < z¢, 3 weights s.t. (w) holds with r ~ log k.



Sieve weights

Fix an admissible k-tuple 1 < hy < --- < hy < k2, k ~ (logz)'/5.
Letx/4 < p < /2. Then hy, := (hip, ..., hip) is admissible.
Define the weight w(p, n) by

w(p,n) =w(n;hy); (0<n<y).

Two crucial estimates (after suitable notmalization)

Theorem (FGKMT)

1
(@ W(y)n;yw(p; n)~1 (peP);
k
(b) ZZ —hip) ~logyz  (z < q<y]
|P| e i

(a) is a 77 sum; (b) is a T»-type sum (with a different k-tuple).



Weighted choice of a, for z/4 < p < x/2

Select a random number in n,, € [0, y| with probability proportional to
w(p, n); that is

P(np:n)::M (0<n<y).

> w(pl)
Bigger weight when many of n + h;p are prime.
For each p € P and fixed (non-random) vector a, let

Xp(@) :=P(ny, + hip € S(a) foralli =1,...,k).
Lemma (Q2(a) correlations) + Chebyshev = X,,(a) ~ 0% w.h.p.
Spse a = d. Define r.v. m,, by
Zp(d;m)

P(m, = mla=a) := X, (@)
P

Zp(d;m) = {

0 otherwise,

Pn, =m) ifm+hjpeS(a)forj=1,...

K



weights, II

Zp(d;m)
P(m, = m|a=a) := 27,
( P | ) Xp(a>
2,(@m) = P(n, = m) ifm+.h]-p68(c?)forj:1,...,k:
0 otherwise,

Let a, = m, (mod p), z/4 < p < z/2. Then

(1) my, + h;p € S(a) for all 4;

(2) (onavg) |Q2(a) N (ap mod p)| 2 logk > log, x (the k-tuple
contains many primes)

If the sets ¢, = O>(a) N (@, mod p) have little overlap (efficiently
chosen), they cover about > x log, =/ log = elements. Good if

1
o J < cx ogQ:r.
log z log z




